This function performs metabolite annotation for a `mass_dataset` object based on MS1 and MS2 data. It matches the mass-to-charge ratio (m/z), retention time (RT), and MS2 spectra with a reference database to identify potential metabolites.

annotate_metabolites_mass_dataset(
  object,
  ms1.match.ppm = 25,
  ms2.match.ppm = 30,
  mz.ppm.thr = 400,
  ms2.match.tol = 0.5,
  fraction.weight = 0.3,
  dp.forward.weight = 0.6,
  dp.reverse.weight = 0.1,
  remove_fragment_intensity_cutoff = 0,
  rt.match.tol = 30,
  polarity = c("positive", "negative"),
  ce = "all",
  column = c("rp", "hilic"),
  ms1.match.weight = 0.25,
  rt.match.weight = 0.25,
  ms2.match.weight = 0.5,
  total.score.tol = 0.5,
  candidate.num = 3,
  database,
  threads = 3
)

Arguments

object

A `mass_dataset` object that contains MS1 and MS2 data.

ms1.match.ppm

A numeric value specifying the mass accuracy threshold for MS1 matching in parts per million (ppm). Defaults to `25`.

ms2.match.ppm

A numeric value specifying the mass accuracy threshold for MS2 (Fragment ion) matching in ppm. Defaults to `30`.

mz.ppm.thr

A numeric value specifying the m/z threshold in ppm for matching MS1 and MS2. Defaults to `400`.

ms2.match.tol

A numeric value specifying the tolerance for MS2 fragment ion matching. Defaults to `0.5`.

fraction.weight

A numeric value specifying the weight for the MS2 fragmentation score. Defaults to `0.3`.

dp.forward.weight

A numeric value specifying the weight for the forward dot product in MS2 matching. Defaults to `0.6`.

dp.reverse.weight

A numeric value specifying the weight for the reverse dot product in MS2 matching. Defaults to `0.1`.

remove_fragment_intensity_cutoff

A numeric value specifying the intensity cutoff for removing fragments in MS2 matching. Defaults to `0`.

rt.match.tol

A numeric value specifying the retention time matching tolerance in seconds. Defaults to `30`.

polarity

A character string specifying the ionization mode. It can be either `"positive"` or `"negative"`. Defaults to `"positive"`.

ce

A character string specifying the collision energy for MS2 matching. Defaults to `"all"`.

column

A character string specifying the chromatographic column type, either `"rp"` (reverse phase) or `"hilic"`. Defaults to `"rp"`.

ms1.match.weight

A numeric value specifying the weight of MS1 matching in the total score calculation. Defaults to `0.25`.

rt.match.weight

A numeric value specifying the weight of RT matching in the total score calculation. Defaults to `0.25`.

ms2.match.weight

A numeric value specifying the weight of MS2 matching in the total score calculation. Defaults to `0.5`.

total.score.tol

A numeric value specifying the threshold for the total score. Defaults to `0.5`.

candidate.num

A numeric value specifying the number of top candidates to retain per feature. Defaults to `3`.

database

A `databaseClass` object containing the reference spectral database for annotation.

threads

An integer specifying the number of threads to use for parallel processing. Defaults to `3`.

Value

A `mass_dataset` object with an updated annotation table containing the metabolite identification results.

Details

This function uses both MS1 and MS2 data (if available) to identify metabolites by matching experimental features with a reference spectral database. If no MS2 data is available, only m/z and RT are used for matching. The matching process is controlled by parameters like `ms1.match.ppm`, `ms2.match.ppm`, `rt.match.tol`, and various weighting factors.

The function supports both positive and negative ionization modes and allows for fine-tuning of the matching process with customizable thresholds and weights. The number of top candidates to retain per feature can be controlled with `candidate.num`.

Author

Xiaotao Shen xiaotao.shen@outlook.com

Examples

if (FALSE) { # \dontrun{
library(massdataset)
library(magrittr)
library(dplyr)
ms1_data =
  readr::read_csv(file.path(
    system.file("ms1_peak", package = "metid"),
    "ms1.peak.table.csv"
  ))

ms1_data = data.frame(ms1_data, sample1 = 1, sample2 = 2)

expression_data = ms1_data %>%
  dplyr::select(-c(name:rt))

variable_info =
  ms1_data %>%
  dplyr::select(name:rt) %>%
  dplyr::rename(variable_id = name)

sample_info =
  data.frame(
    sample_id = colnames(expression_data),
    injection.order = c(1, 2),
    class = c("Subject", "Subject"),
    group = c("Subject", "Subject")
  )
rownames(expression_data) = variable_info$variable_id

object = create_mass_dataset(
  expression_data = expression_data,
  sample_info = sample_info,
  variable_info = variable_info
)

object

data("snyder_database_rplc0.0.3", package = "metid")

database = snyder_database_rplc0.0.3

object1 =
  annotate_metabolites_mass_dataset(object = object,
                                    database = snyder_database_rplc0.0.3)
head(extract_annotation_table(object1))
} # }