vignettes/identify_single_peak.Rmd
identify_single_peak.Rmd
Some times we only want to match one peak. We can use
identify_single_peak()
function to identify single
peak.
We need the m/z, rt and MS2 information. MS2 must be a matrix with
two columns: mz
and intensity
.
mz <- 472.3032
rt <- 772.906
ms2 <- data.frame(
mz = c(81.38455,82.19755,85.02840,86.5934,86.98958,89.48135,90.70250,
93.03886, 102.09140, 103.03903, 116.01658, 127.98412,
134.06819, 152.46967, 162.02180, 162.05521, 162.11261),
intensity = c(1396.341,1488.730,15473.604, 1740.842,2158.014,1351.686,
1547.099,1325.864,22441.047,76217.016,17809.395,
1439.743, 1729.786, 1543.765, 2228.743,
3508.225, 529120.000),
stringsAsFactors = FALSE
)
ms2 %>% head()
#> mz intensity
#> 1 81.38455 1396.341
#> 2 82.19755 1488.730
#> 3 85.02840 15473.604
#> 4 86.59340 1740.842
#> 5 86.98958 2158.014
#> 6 89.48135 1351.686
identify_single_peak()
function
First we load the database from metid
package and then
put them in a example
folder.
##create a folder named as example
path <- file.path(".", "example")
dir.create(path = path, showWarnings = FALSE)
##get database from metid
data("snyder_database_rplc0.0.3", package = "metid")
save(snyder_database_rplc0.0.3, file = file.path(path, "snyder_database_rplc0.0.3"))
Now in your ./example
, there are one file, namely
snyder_database_rplc0.0.3
.
<-
annotation_result identify_single_peak(ms1.mz = mz,
ms1.rt = rt,
ms2 = ms2,
ms1.match.ppm = 15,
rt.match.tol = 30,
ms2.match.tol = 0.5,
database = "snyder_database_rplc0.0.3",
path = path)
#>
|
| | 0%
|
|======================================================================| 100%
annotation_result
is a metIdentifyClass
object, so you can use all the functions for it to process.
sessionInfo()
#> R version 4.2.1 (2022-06-23)
#> Platform: x86_64-apple-darwin17.0 (64-bit)
#> Running under: macOS Big Sur ... 10.16
#>
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
#>
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] tinytools_0.9.1 forcats_0.5.1.9000 stringr_1.4.0 dplyr_1.0.9
#> [5] purrr_0.3.4 readr_2.1.2 tidyr_1.2.0 tibble_3.1.7
#> [9] tidyverse_1.3.1 ggplot2_3.3.6 massdataset_1.0.5 magrittr_2.0.3
#> [13] masstools_0.99.13 metid_1.2.16
#>
#> loaded via a namespace (and not attached):
#> [1] backports_1.4.1 readxl_1.4.0
#> [3] circlize_0.4.15 systemfonts_1.0.4
#> [5] plyr_1.8.7 lazyeval_0.2.2
#> [7] BiocParallel_1.30.3 listenv_0.8.0
#> [9] GenomeInfoDb_1.32.2 Rdisop_1.56.0
#> [11] digest_0.6.29 foreach_1.5.2
#> [13] yulab.utils_0.0.5 htmltools_0.5.2
#> [15] fansi_1.0.3 memoise_2.0.1
#> [17] cluster_2.1.3 doParallel_1.0.17
#> [19] tzdb_0.3.0 openxlsx_4.2.5
#> [21] limma_3.52.2 ComplexHeatmap_2.12.0
#> [23] globals_0.15.1 modelr_0.1.8
#> [25] matrixStats_0.62.0 pkgdown_2.0.5
#> [27] prettyunits_1.1.1 colorspace_2.0-3
#> [29] rvest_1.0.2 haven_2.5.0
#> [31] textshaping_0.3.6 xfun_0.31
#> [33] crayon_1.5.1 RCurl_1.98-1.7
#> [35] jsonlite_1.8.0 impute_1.70.0
#> [37] iterators_1.0.14 glue_1.6.2
#> [39] gtable_0.3.0 zlibbioc_1.42.0
#> [41] XVector_0.36.0 GetoptLong_1.0.5
#> [43] DelayedArray_0.22.0 shape_1.4.6
#> [45] BiocGenerics_0.42.0 scales_1.2.0
#> [47] vsn_3.64.0 DBI_1.1.3
#> [49] Rcpp_1.0.8.3 mzR_2.30.0
#> [51] viridisLite_0.4.0 progress_1.2.2
#> [53] clue_0.3-61 gridGraphics_0.5-1
#> [55] preprocessCore_1.58.0 stats4_4.2.1
#> [57] MsCoreUtils_1.8.0 htmlwidgets_1.5.4
#> [59] httr_1.4.3 RColorBrewer_1.1-3
#> [61] ellipsis_0.3.2 pkgconfig_2.0.3
#> [63] XML_3.99-0.10 dbplyr_2.2.1
#> [65] sass_0.4.1 utf8_1.2.2
#> [67] ggplotify_0.1.0 tidyselect_1.1.2
#> [69] rlang_1.0.3 munsell_0.5.0
#> [71] cellranger_1.1.0 tools_4.2.1
#> [73] cachem_1.0.6 cli_3.3.0
#> [75] generics_0.1.3 broom_1.0.0
#> [77] evaluate_0.15 fastmap_1.1.0
#> [79] mzID_1.34.0 yaml_2.3.5
#> [81] ragg_1.2.2 knitr_1.39
#> [83] fs_1.5.2 zip_2.2.0
#> [85] ncdf4_1.19 pbapply_1.5-0
#> [87] future_1.26.1 xml2_1.3.3
#> [89] compiler_4.2.1 rstudioapi_0.13
#> [91] plotly_4.10.0 png_0.1-7
#> [93] affyio_1.66.0 reprex_2.0.1
#> [95] bslib_0.3.1 stringi_1.7.6
#> [97] desc_1.4.1 MSnbase_2.22.0
#> [99] lattice_0.20-45 ProtGenerics_1.28.0
#> [101] Matrix_1.4-1 ggsci_2.9
#> [103] vctrs_0.4.1 pillar_1.7.0
#> [105] lifecycle_1.0.1 furrr_0.3.0
#> [107] BiocManager_1.30.18 jquerylib_0.1.4
#> [109] MALDIquant_1.21 GlobalOptions_0.1.2
#> [111] data.table_1.14.2 bitops_1.0-7
#> [113] GenomicRanges_1.48.0 R6_2.5.1
#> [115] pcaMethods_1.88.0 affy_1.74.0
#> [117] IRanges_2.30.0 parallelly_1.32.0
#> [119] codetools_0.2-18 MASS_7.3-57
#> [121] assertthat_0.2.1 SummarizedExperiment_1.26.1
#> [123] rprojroot_2.0.3 rjson_0.2.21
#> [125] withr_2.5.0 S4Vectors_0.34.0
#> [127] GenomeInfoDbData_1.2.8 parallel_4.2.1
#> [129] hms_1.1.1 grid_4.2.1
#> [131] rmarkdown_2.14 MatrixGenerics_1.8.1
#> [133] lubridate_1.8.0 Biobase_2.56.0